Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C22.F5

Direct product G=N×Q with N=C2 and Q=C2×C22.F5
dρLabelID
C22×C22.F5160C2^2xC2^2.F5320,1606


Non-split extensions G=N.Q with N=C2 and Q=C2×C22.F5
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C22.F5) = C2×C10.C42central extension (φ=1)320C2.1(C2xC2^2.F5)320,1087
C2.2(C2×C22.F5) = C4×C22.F5central extension (φ=1)160C2.2(C2xC2^2.F5)320,1088
C2.3(C2×C22.F5) = C2×Dic5⋊C8central extension (φ=1)320C2.3(C2xC2^2.F5)320,1090
C2.4(C2×C22.F5) = C20.34M4(2)central extension (φ=1)160C2.4(C2xC2^2.F5)320,1092
C2.5(C2×C22.F5) = C2×C23.2F5central extension (φ=1)160C2.5(C2xC2^2.F5)320,1135
C2.6(C2×C22.F5) = Dic5.13M4(2)central stem extension (φ=1)160C2.6(C2xC2^2.F5)320,1095
C2.7(C2×C22.F5) = C208M4(2)central stem extension (φ=1)160C2.7(C2xC2^2.F5)320,1096
C2.8(C2×C22.F5) = C20.30M4(2)central stem extension (φ=1)160C2.8(C2xC2^2.F5)320,1097
C2.9(C2×C22.F5) = C5⋊C87D4central stem extension (φ=1)160C2.9(C2xC2^2.F5)320,1111
C2.10(C2×C22.F5) = C202M4(2)central stem extension (φ=1)160C2.10(C2xC2^2.F5)320,1112
C2.11(C2×C22.F5) = C20.6M4(2)central stem extension (φ=1)320C2.11(C2xC2^2.F5)320,1126
C2.12(C2×C22.F5) = C24.4F5central stem extension (φ=1)80C2.12(C2xC2^2.F5)320,1136

׿
×
𝔽